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1 Introduction In this paper, we describe a broadly applicable method

The process of spontaneous parametric downconversion, inOf finding noncollinear phase-matching configurations. We

which a “pump” photon is effectively split into a pair of also provide examples obt_ained from a computer program
lower energy “signal” and “idler” photons in a nonlinear we have developed that implements our method and is

optical medium, has proved abundantly useful in the last freely available on the Internet. We hopg tha; the broad
decade. The twin photons, which are entangled in energy, pool of qalqulable crystgl data mcluded with this program
momentum, and emission time, have been used in avariety(bOth uniaxial and biaxial crystal are mcluQednd W-Ide .
of striking demonstrations of the most nonclassical aspectsSpECtral- fanges that can now _be ca_lcu_latlona!ly nvest-
of quantum theory:? In addition, the downconverted pho- ?igtgg\mI_Icilgvztrg?;nrii%aerﬁg%rﬁt;n designing their paramet-
tons have found applications in the field of metrology, '
where they can be used to determine the quantum effi- ) N )
ciency of photon-counting detectors, and also to determine2 Theory: Phase-Matching Conditions in
the spectral radiance of an infrared source. The photon cor- ~ Uniaxial and Biaxial Crystals
relations of down-converted light enable these measure-
ment applications to be performed in a fundamentally ab-
solute manner as opposed to conventional methods, whichConsider a three-wave mixing process, where one photon
rely on previously calibrated standartfs. incident on the crystal interacts to produce a pair of lower
Calculation of the three-wave down-conversion interac- €nergy correlated photons by parametric down-conversion.
tion requires the use of conservation of energy and conser-] NiS study is carried out for the most general case, includ-
vation of momentum, commonly referred to as phase N9 biaxial and uniaxial crystals, for noncollinear or collin-
matching. Because the process is nonresonant, a downconE&/ geometries and for pairs of downconverted photons
verted photon may be emitted over a wide range of wave- With or without equal frequencies. The two main con-
lengths, so long as the energy and momentum conservatiorpraints are the conservation of energy,
conditions for the pair of photons are met. The individual _
photons of a pair may also propagate along different direc- “Pump— @signar” @idler
tions; this is referred to as noncollinear phase matching.
Collinear phase matching, where the incident photon and
the output pair of photons propagate in the same direction
inside the crystal, is generally well understood, while the
noncollinear geometry is more difficult to calculate and
thus is poorly documented. One of the advantages of non-
collinear phase matching over the collinear case is that it
enables easy discrimination between each of the two down-
converted photons and the pump beam.

2.1 Coordinate System, Equations, and Variables

)

where w,mp is the frequency of the incident photon and
wsignal aNd wiger are the frequencies of the two down-
converted photons, and the conservation of momentum,

I(pumpz ksignal’" Kidler 2

where Ko mp, Ksignanw @ndKiger are the pump, signal, and
idler wave vectors, respectively.

Using spherical coordinates, the pump wave vector is
- expressed in the crystal principal dielectric ake§, andz
* http://physics.nist.gov/Divisions/Div844/facilities/cprad/cprad.html with the polar and azimuthal anglésy,, and ¢,ym, de-
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Fig. 2 Another view of the crystal and laboratory frame coordinates,
showing a typical experimental arrangement for parametric down-

Fig. 1 Crystal axes and the laboratory frame axes (x,y,z), are conversion within a crystal. In this figure, the x-z plane (¢pump="0
crystal dielectric axes (the optical plane is the x-z plane and n, plane) is in the plane of the page. For “_”'?X'a' crystals, t_he cho_lce
>n,>n,); (x',y',2"), rotated axes (rotation angle ¢, about the axis Ppump=0 can always be made, but for biaxial crystals, this drawing

. nop o : represents a special case in which the crystal axes C; and C,, and
tzr)]é ZT(?S (})/(,),y’ 2", laboratory frame axes (rotation angle ¢, about the pump beam all lie in the plane of the page. The signal beam is

emerging low and toward the viewer, while the idler beam is propa-
gating high and away from the viewer. The azimuthal angles ¢gigna
and ¢;qer are measured from the x-z plane. Dots indicate the points
where the rays intersect the surface of the crystal.
fined as shown in Fig. 1. In uniaxial crystals there is only
one axis enabling symmetry of revolution, so the direction ~ The cosine vectors of the propagation directmre:
of the pump can be specified by a single angg,,. Thus, sy=sinfcose, s,=sindsine ands,= cosd. Note that the
for uniaxial crystals the result of the calculations will not pump direction |s specified with respect to the crystal axis
depend on the azimuthal anglg,,. However, for biaxial ~ (or axes in the xyz (lab) frame via
crystals, which lack that symmetry, two angles are re- ]
quired. The angles are defined here accordln%to the posi- SiN OpumpCOSP pump
tive nonlinear optics frame convention of Rob i i

Since the crystal dielectric axes are not convenient for P SIN GpumpSin @pump ’ @
calculating the resulting output, we express the signal and COSOpump X.y.2
the idler wave vectors in the lab frame defined by the ro-
tated axek”, §”, and?”, as shown in Fig. 1. In the lab  while the signal and idler beams are specified relative to the

frame, the signal and idler wave vectors are pump beam via

sin 0signaICOS‘Psignal

@Dpump, Ssigna™ SiN OsignaSiN Psignal )

kpump npump( Hpumpa‘Ppump) Spumpa
COSasignal X"y 2"
. h (8 D S'gnaLs - ) SN igler COSQiger
signal™— Msignal Usignal: Psignal signals Siler= sin eidlerSin(PidIer ] (5)
Cosaidler x”,y”,z”
Kiater=Nigter Oidtors Picier) 2% The transformation between coordinate systems is given by
X cosfcose —sing sinfcose) /"
where n;(i =pump, signal, idler) are the refractive indices |y |=| cosfsing cose sinésine y” (6)
for the photongfor their individual states of polarizatipn z . 7"
. ) T - . —siné 0 cose
in the given direction of propagatick . Here 6, is the
angle betwee, :jmd thez ast, vv_h|Ie Ppump is the azi- " Cosfcosp cosfsing —sind)
muthal angle(about?) from theX axis toS,ym, in the x-y . )
plane. For the downconversion beams, the opening angles ¥" | =| —singe cosep 0 Y|, (@
Osignal @Nd bigie, are specified relative t§,m,, and the azi- z' sinfcose sinfsing  cosd Z
muthal anglespigna and @igie, refer to rotations in the plane
normal to8,,, (see Fig. 2. where 0= 0ymp and ¢ = @yump-
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The problem to be solved has variablég;mp, ¢pump Here n,, n,, andn, are the crystal principal refractive
Osignals  Psignalr  Oidiers Pidiers @pumps Dsignal, aNd Wigier - indices at a given wavelength. For a biaxial crysta),
These are related by Eq4) and(2), which yield one and <ny<n,, while for a uniaxial crystalp,=ny,=n, (ordi-
three equations, respectively. Thus, we have nine variablesnary) andn,=n, (extraordinary. Equation(10) can be re-
related by four equations. Five variables can therefore beyritten as
chosen as parameters to reduce the number of unknowns to
equal the number of equations. The pump direction and

: 1 1 1 1 1 1
frequency (as given by 0 ump, ©pump: and.z.upum;) can N 5)2( St +s§ >+ — +s§ 5+ = |x
clearly be chosen as parameters. In addition, one of the ny n; 1 x Ny
downconverted photon frequencies can be chosen, as well 2 2 2
as its azimuthal anglgln our analysis,wsigna and @sgnal n ixz N ‘:‘y2+ izz _o (11)
are selectedl. nyn;  ngn; - ngng

In general(for uniaxial and biaxial crystalsthere are
two different indices of refraction for a single direction of
propagation. For uniaxial crystals, those are the “ordinary”
and the “extraordinary” indices of refraction. For biaxial
crystals, they are referred to as the “fast” and the “slow,”
where the fast index is the smaller of the two indices. Hav-
ing two possible indices for each wavelength enables the N5
phase-matching o, mp, Ksignaw @andKiger to be achieved
in several ways, for example,

wherex=1/[n?(8)]. Solving forx, we obtain one solution
for each possible polarizatidfiast or slow:

12
2

B+ (B?-4C)Y?

1/2
2
Kpumd fast) = Ksignal SI0OW) + Kigje( Slow), Mslow™ { m} ’ 12)
kpum;{fast' = ksigna( fast) + kidler(5|0W)a (8) with
kpum;:(fast' = ksigna(smw) + Kigrer(fasy. 1 1
B=[s{ 2+ 3|+ 5+ 3| +si =+ }
These are the most common phase-matching configura- ny N x Nz N Ny

tions, and are usually classified by typ@&he first line of
Eq. (8), where the signal and idler beams have similar po- g2 2 2
larizations is referred to as type | phase matching. The sec-C=|— X 5+ — Y =+ — z Al
ond and third lines are examples of type Il phase matching, Ny-Nz NNz NNy

in which the signal and idler polarizations are orthogonal,

the terms “signal” and “idler” are arbitrary, and can be To solve the phase-matching problem, we choose a crys-
assigned to either the fast or the slow waves. While it is tal and type of phase matching. The only data required are
theoretically possible for the pump to be the slow ray, this the indices of refraction of the crystal. As already men-
does not usually lead to phase matching in most materials.tioned, we can select the pump frequency and direction
Phase matching in uniaxial crystals is often described in (@pumps pumps @pump @Nd the signal frequency and azi-
terms of the ordinary and extraordinary indices. For ex- yuthal angle Ggigna, signa) - It is also clear from Eq(2)

ample, in a “positive uniaxial” crystal—one for which the 4+ the three wave vectors must lie in a plane, so
extraordinary ray travels slower than the ordinary ray—

phase matching is achieved with the following combina-

tions of the ordinary and the extraordinary light: Pidler= Psignal™ - (13
Kpumd 0) = Ksignal®) +Kigier(©) ~ This relation makes one of the three component equa-
tions represented by E@2) redundant. So now we have
three equations and three unknowns remaining. Of these,
kpumg{o) = ksigna(o) +Kigier(€) 9 9 9

Eqg. (1) simply relateswigier 10 @pymp aNd wgjgna;, l€aving
just two coupled equations and two unknowns.
kpum;{O) = ksigna( )+ Kigier(0).

We find the index of refractiom(3) in a given direction 22 Solving the Equations
S=(sx,Sy,S;) using the indicatrix equation given by The remaining variablesfsgn, and ige, Mmust be found
Fresnel's equation of wave normals, expressed in terms ofsimultaneously using Eq2). This problem is complex be-

the crystal principal dielectric axés cause the index of refraction depends on the wave vector
direction, so in the general biaxial case, we must solve Eg.
2 2 2 (10) to find an index. This affects the magnitude of the
X LA— z =0. (10 wave vector, as shown in E¢3), requiring that we solve

—5 = — + —5 = —5 —
n43%)-n° n4%-n° n¥3-n,’ Eq. (2) using both Eqs(3) and(10). Because this problem
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has no analytic solution, it requires an iterative search rou-
tine. We can deal with this situation three different ways.
First, we can use two equations of K@) to find a relation
betweenbigna and figer and then use the remaining equa-
tion of Eq.(2) to find its root with a root finding subroutine
(one equation and one unknowrsecond, we can rewrite
Eq. (2) as

where
Ak=Kpump~ Ksignar~ Kider (15)

and find its minimum as a function @jgny and Oige,. A
final method is to apply a 1-D minimization algorithm after
obtaining a relation betweefyg,, and g, -

The first method finds thak minimum by resolving Eq.
(14) into the three following equations:

Ak,=0, (16)
Aky=0, 17)
Ak,=0. (18

Then a root-finding subroutine is required to solve these
equations. This method works well for uniaxial crystals, but
produces erroneous results for some biaxial crystals;
=0, Aky=0, andAk,=0 can be solved independently, but
the resulting Ak| may not necessarily equal zero. This can
happen because thé;g,, and fiqe, values required for
Ak,=0 can be different from those required fak,=0
andAk,=0. Therefore, although this method is faster than
the other methods, it requires an independent check o
|Ak|=0. Furthermore, in the case of a finite length crystal
it is difficult to determine whether phase-matching is al-

lowed, because in practice one can have phase-matching

even when Ak|#0.

The second method treafsk as a vector quantity and
finds the minimum of Ak| = f(gignai, figier) - FOr the ideal-
ized case of an infinitely long crystal and infinitely wide
pump beam|Ak|=0 is required for phase-matching, be-
cause the interaction Hamiltonian contains an integral over
all spacé producing a delta function:

fff exp(i- Ak-r)d®r o« S(AK). (19
\%

However, for a finite crystal length and a Gaussian
transverse pump intensity profile of finite widil, it is
possible for downconversion to occur even whek# 0,
that is, with imperfect phase matching. In this case, the
interaction Hamiltonian integral yields the phase-matching
function:

Ksi gnal

Osi gnal

2Mkiransverse for =1/2
pump

\

<>
284, for ®=1/2

Fig. 3 Imperfect phase matching of the pump, signal, and idler
propagation vectors.

1 2
sin(ELAkZ)

(20

1
q>=exp( —EWZ(Ak)2<+Ak§)>

1
LAk,

This function is a weighting function for the intensity of
the emitted downconversion that has a maximum value of 1
for |Ak|=0, and falls to zero as the phase mism3ttk|
increases. We may then arbitrarily say that phase-matching
occurs for values ofAk| that yield ®=1/2 (see Fig. 3
This  corresponds to |Ak,=<2.783L in the
direction of pump propagation AKyansvers=0) OrF
| AKyansversk<1.177WV in the plane orthogonal to pump di-
rection Ak,=0). For this situation, the goal of our method
is still to find the minimum of/Ak| as a function of two
variables, fsigna and figier, but we now must also evaluate
the resulting value ofd and determine whetheb=1/2 or
not.

Because there is no general analytical method to find the
minimum value of| Ak| for each possible signal angle un-
der a given set of pumping conditions, we search for this
minimum iteratively, via a computer algorithm. This
method is slower than the first, but produces more reliable
results for both uniaxial and biaxial crystals. It is imple-

fmented in our computer prografeee Sec. Bas follows:

1. Set the value ol mp, Opumps Ppumps Asignan and
Psignal

. Calculatek pymp.

. Calculate\ g, and @iqier [cf. Egs.(1) and (13)].

. Initialize both the unknown®g;gn, and g, to the
valueStimes 0.03 rad, wher8is a scale factor cho-
sen by the user. Alternatively, after the first iteration
the user may choose to initialize these variables with
the optimum values found in the previous iteration.

. Call UNCMND, a 2-D minimization routine that re-
turns the minimum value ofAk| and the optimum
phase-matching values dgjgny and Oige,, Which
correspond to this minimum. UNCMND computes
|Ak| and its first derivative, and uses Newton’s
method to find the zero of the first derivatite.

6. Write these values to an output file.

A WwN

*UNCMND is a public-domain FORTRAN routine available at the fol-
lowing web site maintained by NIST: http://math.nist.gov/cgi-bin/gams-
servel/list-module-components/NMS/UNCMND/5673.
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7. If Ngignal OF @signaliS final value, then end; otherwise, § '° ‘
. £=4
increment\ igna OF @signai@Nd go to step 3. § 18|
i
The third method for solving Eq2) begins by rewriting E 17 nons=n
it as follows: °
§ 16| n=n,
Widler =
— i = i 15 ‘ : ‘ ‘
Nigler, —— SIN( Bidier) = NsignaiSIN( Osignal (21 = 0 o5, 1 15 2
signal Signal (p.m)
Widler ®pump Fig. 4 Indices of refraction versus wavelength for BBO, a negative
nid|e,f cog Hidler) = npump_—— nsigna|COS( Gsignab. un!axial crystal. The graph_indicat_es that “extraordinary” waves (po-
Wsignal Wsignal larized parallel to the optical axis z) travel faster than “ordinary”
(22 waves (polarized transverse to this axis).

By adding the squares of these two equations, one obtains:

2

n Widler _| 2 +n? “pump 8. 2-D plot, optimum 6ggna= f(Asigna) at chosen
|dlerw ] ignal pumprA . . .
signal signal @signat With spreading ifgjgna and @gignal
® 12 9. 3-D  plot, phase-matching  function ®
um
- anummsignaw p pcoi asignao . (23) = f()\signalv 0signab ) ]
signal 10. 3-D plot, phase-matching  function &

= (N cinals @i
Then, using Eq(23), Eq. (21) can be rewritten as (Asignals @signa

We now proceed to give examples and discussion of the
NsignarSiN signa) results for each of these options.

Oigier=arcsin

2
w w
2 2 pump pump
\/nsignalJr npump 2 - 2r]signar]pumpw cog t9signaD
s

o | (24) 3.1 Option 1: 2-D Plot, n,,ny,n,=f(\yump)

ignal
to provide a relation between the two unknowns. We can This plots the most basic information available for a spe-
then use a one dimensional minimization function Adc cific crystal material, namely, the variation of the indices of

Although it can save calculation time, this method was not Lef;cirggtr':t)g iwliﬂewggﬁlﬁgigetrrji Tzeinpdrggrgg g]rglilé?\ersergt%oﬁg_
implemented because it assuntag,, is given by a defi- yp b

. . ) . for a number of common nonlinear optical materials, drawn
nite relation to'g,id'ef (i.e., .perfect phase match!hgnd SO It from references that are cited in comment lines in the code.
does not lend itself to finding output spreading whate  pjots of this kind provide the first clue as to whether any
#0. phase matching will be possible for a particular combina-

tion of pump, signal, and idler wavelengths. Such a plot for

) ) B-barium boratg BBO) is shown in Fig. 4.

3 Practice: Computational Results
We have implemented the second of the above methods in
a FORTRAN program designed to solve the phase- ; . _ -
matching problem for a wide variety of pumping conditions 3.2 Option 2: 3-D Plot, Ngiow™ Ntast=( Osignal  Psignal)
and crystal materials. The program can be freely down- Although it is fairly simple to determine crystal configura-
loaded from the web at: http:/physics.nist.gov/Divisions/ tions that produce phase matching in a uniaxial crydtet
Div844/facilities/cprad/cprad.html. It is capable of generat- cause there is only a single variabl,,,y, determining
ing data for the following kinds of plot¢f indicates a phase-matching regions in a biaxial crystal, such as KNbO

function of the variables in parentheses is more complex®~12To determine the effect of both vari-
ables @pumpand @pump, graphs ofgq,— Neast VErsustp mp
1. 2-D plot,ny,ny ,nz=f(Apump and ¢pump can be producedFig. 5). As is seen in the next
2. 3-D plot, Ngjow— Ntast= f (Osignans Psigna) option, phase matching usually occurs Whetg,,— Nast
3. 3-D plot, Akminimum= f (signal: @signa) . differs significantly from zero.
4. 3-D plot, phase-matching function

b= f(AktransverseAkz)
5. 2-D plot, fsigna VErsushigier (A signal fixed) for a cho-

sen value of the phase-matching function 3.3 Option 3: 3-D Plot, A Kinimum=f(Osignal» Psignal)

6. Polar plot (optimun®gigna, OPiMUMO;ge,) Graphs of the minimum value dfAk| versus 6,m, and
=f(@signa) ¢pumpCan also be producedee Fig. 6. One can notice the

7. 2-D plot, optimum 6ggna=f(Asigna) at chosen similarity between Figs. 5 and 6. ligg,— Nas=0, then
@signai With spreading ifgigna and @signais Figier 2N AKminimum 1S large, while if ngoy—Niast 1S large, then
Oigier fixed |AKminimuml =0. It is clear that some difference between
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e
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-0.001
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0.00 0.05 0.10 0.15 4
Ngow Peast %
=]
Fig. 5 Plot for ngjqy— Nias; VErsus Oyymp and ¢@pymp in @ KNbO; crystal ﬁ
with X pymp=0.633 um.
Ngow aNd N¢,g; is required for phase matching. These plots
can be then used to quickly determine which crystal con-
figurations lead to phase matching. 93001 15 mm

3.4 Option 4: 3-D Plot, Phase-Matching Function ®
= f(AKyanverse » AK)

For crystals of finite length, the signal and idler vectors -0.001
need not sum exactly to the pump vector for some down-

conversion to occufsee Fig. 3. For these cases, the down-

conversion intensity will be weighted by the phase- -0.001  0.000 0.001
matching function®, as defined in Eq(20). This option Ak,
generates data for plots @ (see Fig. 7, indicating the
regions of momentum space around the pump vector into
which the sum of the signal and idler vectors must fall for 1 ‘
down-conversion to occur. The down-conversion intensity m
will be highest for the central regions whede=1 (i.e., 0 .25 .50 .75 1.0
|Ak|=0) and lowest for the outer regions whefie=0.
Note that the longer the crystal, the more constricted the
phase-matching region becomes in thelirection. Simi-
larly, a wider pump beam would restrict the phase-
matching region, but in the transverse direction.

Aklransverse

Down-conversion Intensity

Fig. 7 Phase-matching function for KDP crystals of three different
lengths and constant pump beam width of 2 mm (FWHM).

3.5 Option 5: 2-D Plot, Ojgna VErsus bigier (X signal
Fixed) for a Chosen Value of the Phase-
Matching Function

For a crystal of finite length and pump beam of finite width,
there are many combinations of signal and idler opening
angles that can lead to down-conversion at a given pair of
signal and idler wavelengths. This option generates a plot
of all possible combinations ofg;g,y VErsusfige,, which
result in the phase-matching function falling to some spe-
cific value, say® =0.5, for a particular pair of fixed down-
conversion wavelengthsee Fig. 8

3.6 Option 6: Polar Plot,
(Optimum gsignal ,Optimum 6igie,) = ( (Psignal)

000 02 050 To map the down-conversion output, this option produces
Ak . 2-D graphs of the signal and idler output directions for a
Minimum . . . X
given signal frequencyfig. 9). This graph corresponds to a
Fig. 6 Graph of |Ak| versus ,ymp and @pump in @ KNbOj; crystal with single Crystal Conﬂguratmn%ump f”md wpum_p are fixed _W|th
A pump=0.633 um and \gjgng=0.950 zum. ¢pump arbitrary because BBO is uniaxjabnd a single

Optical Engineering, Vol. 39 No. 4, April 2000 1021

Downloaded from SPIE Digital Library on 04 Mar 2010 to 129.6.147.88. Terms of Use: http://spiedl.org/terms



Boeuf et al.: Calculating characteristics of noncollinear . . .

3.08 5
esignal 4
3.07 ,
3 2
Signal 4 0.08 >
3.06 | 5 | ._Mu_.’_______...._...__....._..._.......n_________ _A_i()_‘ Signal § 1 o0.06 g
) - T 7 0.04 a
~, 305} I 1002 2
2 LAOsiga 10”2
L 05 0.6 0.7 0.8 0.9 0
3.04 | A Signal
3.03 |- Fig. 10 Upper curve shows optimum 6ggna= f(Asigna), While the
lower two curves show the spreads in fggna aNd Pgignar, With Gigier
3.02 . : and ¢qier fixed, ®=0.5. All curves for a 5-mm-long KDP crystal and
241 242 243 2.44 245 246 247 2-mm pump beam width, Aymp=0.351um, 6pmy=52deg,
5] (0) (lspump:0 deg, and ¢signal=0 deg.
Signal

Fig. 8 Graph of gignq VErsus bige, (P =0.5) for a KDP crystal (5-mm
crystal length and 2-mm pump width) with A pymp=0.351 um, @pump for plotting the optimum signal angle as a function of signal
=0 deg, fpump=52 deg, Asignai=0.633 um, and ¢gigna=0 deg. wavelength, as shown in Fig. 10. For type | down-
conversion, the terms “signal” and “idler” are completely
. . arbitrary, so that this is in fact a graph of both the signal
@signal [Which can be used with Eq) to calculatewige]- and idler emission angles. For type Il down-conversion,
The conﬂgurayon in Fig. 9 was chosen because .|t shows gpe may find the idler angles by running the option again
both the collinear @iger=fsigna=0) and noncollinear  and choosing the “signal'(now really the idley to be the
cases. Both the internal and external angles for the emissionsjow wave instead of the fast wave, or vice versa. Both the
are calculated, although only the internal results are showninternal and external angles are reportdy. 10 displays
below. Multlple plOtS of this kind with different Signal and internal ang|e)5 The opening ang|es can be p|otted for any
idler frequencies can be examirjed if more complete results cpgice of emission plane, such @gg,=0 deg.
of the downconversion are desired. If the crystal were infinitely long, down-conversion
. ) would occur only at these optimal combinations of wave-
3.7 Option 7: 2-D P/C_’t' Opt/mum 0$i9na'=f()‘si9”a') at length and anglxé. For crystgls of finite length, however,
Chosen ¢signa With Spreading in signa and some emission will occur in a range of angles about the
@signal s Gidier and @igier Fixed optimum for each wavelength. The broader the phase-
For any given pair of conjugate signal and idler wave- matching function, the larger this range of angles becomes,
lengths, there may exist an optimum pair of emission @s one might guess from examining Figs. 3 and 7. There-
angles fggna and g, producing perfect phase matching fore, option 7 also provides a first-order estimate of this
lie., satisfying Eq.(2) and yielding ®=1]. Down-  SPreading in botfsgna and ¢signa as a function of wave-
conversion will be strongest for these optimum combina- €ngth. For each signal wavelength, the spreading in the

tions of wavelengths and angles. This option provides dataSignal angles is calculated assuming that the conjugate idler
photon is emitted at precisely the optimum opening angle

for its wavelength, so that onlygig,a and ¢gigna are al-
lowed to vary. The largest nonoptimal valueséf;,, and
®signal that result ind falling to some specific value, say,
®=0.5, are found, and the difference between these non-
optimal angles and the optimal angles are reported in the
data set as “spreads.” They may be used to construct error-
bars or plotted independently, as in Fig. 10.

150

180 3.8 Option 8: 2-D Plot, Optimum 6Osigna= f(Nsignar) at
Signal Chosen ¢gigna With Spreading in 6gigna and
Psignal
210 \\ 330 This option is the same as option 7, but the spread;if,

lated pai : SPred _
correlated pag. at each wavelength are computed in an iterative fashion

that enables both the signal and the idler to be emitted at a
240 300 nonoptimal opening angléig. 11). This provides a more
270 realistic estimate for the spreads than that given by the
) o ) ) previous option, but also requires more computing time.
Fig. 9 Polir plot of the direction Sf signal and idler outp_ut photons However, the spread ipq,. is computed exactly as in the
(Nsignat, idler=0.702 um) for 6pymp=49.2deg and X pymp=0.351 um . - . olgna -
from a BBO crystal. The pump beam propagates out of the page at previous option. For if the idler were not constrained to be
the origin. emitted in the plane chosen by the usgsay, @jge= 180
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0

Signal

1 0.08

o

1 0.08
1 0.04

() 8|bue v
o

1 0.02

| ¢Signal (0)

o

A Signal

Fig. 11 Upper curve shows optimum Oggna= f(Asigna), While the
lower two curves show the spreads in Ogigna and @gignai» With @igier
fixed, ®=0.5, for a 5-mm crystal length and 2-mm pump width. Here
Oiqier 1S allowed to vary, as opposed to in Fig. 10 where 6,y, is fixed. 0.
This difference produces a larger spread in 6gjgngy- All curves for a
5-mm-long KDP crystal and 2-mm pump beam width, A,m,
=0.351 um, Opymp=52deg, ¢pump=0 deg, and ¢gig,o=0 deg.

0.75 1.

X'Signal (pm)

0.5 1.0

Downconversion Intensit;
deg corresponding to the choice of optimigmy,,~ 0 deg Y

then the sequence of iterations would simply map out the rig 13 Graph of &= F(Nsignar - @signa) or @ KDP crystal (5-mm crys-
entire circle of emission for both the signal and the idler. ta length and 2-mm pump width) with Npump=0.351 M, @pump="0
As in option 7, the spreads that resultdnfalling to some deg, Opump=52 deg, and @gjgy=0 deg.

user-defined “target” value likab=0.5 are computed.

3.9 Option 9: 3-D plot, Phase-Matching Function sion as a function of wavelength and angéee Fig. 12
® = (A signal » Osignal) The intensity will be highest for the optimum phase-

In this option, the value of the phase-matching function is Matching combinations that result in=1. Note that such
computed for the entire range of signal wavelength and plots cannot provide completely accurate pictures of the
angle combinations, within the domain of validity of the down-conversion intensity, since the probability of down-
Sellmeier coefficients for the chosen crystal. This is done conversion is also affected by the strength of the nonlinear
by repetition of option 8, with the “target” value ofP electric susceptibility—another frequency-dependent quan-
incremented from 0.1 to 1. Because the phase-matchingtity. However, if the values of are compared over a range

function is a weight function for the emission of down-
converted pairs, a 3-D plot @ (A signan Osigna) CaN serve as
a crude picture of the relative intensity of the downconver-

~ 3.8
e}
N
-
&
&
3.7
0.60 0.65 0.70
]'Signal (Hm)
0.0 0.5 1.0

Downconversion Intensity

Fig. 12 Plot for ® = f(\gignar » Osigna) fOr @ KDP crystal (5-mm crystal
length and 2-mm pump width) with A ;,=0.351 um, ¢p,mp=0 deg,
Opump=52 deg, @gigna=0 deg. (Here bggnq is an external angle.)

of frequencies with nearly constant susceptibility, then their
interpretation as relative intensities for the downconversion
should be valid over that range.

3.10 Option 10: 3-D Plot, Phase-Matching ®

= f()\signal ) (Psignal)
This option shows the variation df as a function of signal
wavelength and signal azimuthal angitather than opening
angle as in the previous optipnassuming that the azi-
muthal angle of the idler is fixeths in options 7 and BA
3-D plot of the resultgshown in Fig. 13 can be interpreted
as plots of relative down-conversion intensity versus wave-
length and azimuthal angle, with the same caveats as listed
for option 9.

4 Conclusion

The methods presented here for calculating both collinear
and noncollinear phase matching enable experimental con-
figurations including either uniaxial or biaxial crystals to be
modeled in detail. These computational techniques can pro-
vide preliminary answers to a variety of questions that must
be asked about a particular downconversion source before
it is constructed in the laboratory, such as “Over what
range of wavelengths is downconversion possible? What
should the cut of the crystal's optical axis be? At what
angles can we expect to find certain wavelengths emitted
from the crystal?” and so on. To our knowledge, the pro-
gram made available here is the first comprehensive
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